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A B S T R A C T

The brain’s sensitivity to and accentuation of unpredicted over predicted sensory signals plays a fundamental role

in learning. According to recent theoretical models of the predictive coding framework, dopamine is responsible

for balancing the interplay between bottom-up input and top-down predictions by controlling the precision of

surprise signals that guide learning.

Using functional MRI, we investigated whether patients with Parkinson’s disease (PD) show impaired learning

from prediction errors requiring either adaptation or stabilisation of current predictions. Moreover, we were

interested in whether deficits in learning over a specific time scale would be accompanied by altered surprise

responses in dopamine-related brain structures. To this end, twenty-one PD patients tested on and off dopami-

nergic medication and twenty-one healthy controls performed a digit prediction paradigm. During the task, vi-

olations of sequence-based predictions either signalled the need to update or to stabilise the current prediction

and, thus, to react to them or ignore them, respectively. To investigate contextual adaptation to prediction errors,

the probability (or its inverse, surprise) of the violations fluctuated across the experiment.

When the probability of prediction errors over a specific time scale increased, healthy controls but not PD

patients off medication became more flexible, i.e., error rates at violations requiring a motor response decreased

in controls but increased in patients. On the neural level, this learning deficit in patients was accompanied by

reduced signalling in the substantia nigra and the caudate nucleus. In contrast, differences between the groups

regarding the probabilistic modulation of behaviour and neural responses were much less pronounced at pre-

diction errors requiring only stabilisation but no adaptation. Interestingly, dopaminergic medication could neither

improve learning from prediction errors nor restore the physiological, neurotypical pattern.

Our findings point to a pivotal role of dysfunctions of the substantia nigra and caudate nucleus in deficits in

learning from flexibility-demanding prediction errors in PD. Moreover, the data witness poor effects of dopa-

minergic medication on learning in PD.

1. Introduction

To behave adaptively, we need to adjust our expectations to persistent

environmental changes while sustaining the pursuit of our action goals

despite temporary distractions. Environmental changes that do not match

our expectations, i.e., prediction errors, are known to cause phasic

dopamine signalling in the midbrain. Thereby, they trigger bottom-up

processing guiding the adjustment of predictions and the initiation of

behaviour (Schultz and Dickinson, 2000; Redgrave and Gurney, 2006;

Murty et al., 2011; D’Ardenne et al., 2012). This adjustment pertains to

learning since future surprise can be minimised and behavioural impli-

cations of prediction errors become more predictable (Fiser et al., 2010;

Friston et al., 2014).

The influence of predictions on behaviour is suggested to be regulated

by tonic dopamine action, determining the relative weight or precision of

bottom-up prediction errors for top-down predictions (Friston et al.,

2012). By regulating phasic dopamine release, tonic dopamine has been

found to modulate the surprise-driven learning rate, biases action
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selection and sets transition thresholds between flexible and stable states,

favouring either bottom-up sensory input or top-down predictions

(Beeler et al., 2010; Beeler et al., 2012; Humphries et al., 2012; Yu et al.,

2013; Barter et al., 2015).

During learning, predictions are adapted to a particular context,

based on the probabilistic structure of the past (Behrens et al., 2007).

Here, the cholinergic and the noradrenergic system is ascribed a role in

computations of uncertainty (Yu and Dayan, 2005; Marshall et al., 2016).

However, depending on whether a current context consists of prediction

violations that either signal the need for adapting to lasting changes of

the environment (flexibility-demanding prediction errors, hereafter) or

are caused by temporary chance occurrences of uncommon events (sta-

bility-demanding prediction errors), the adoption of either a more flex-

ible or stable state is required, respectively. The interplay of flexibility

and stability in response selection is suggested to be balanced by the

levels of dopamine in frontostriatal circuits (Williams and Castner, 2006;

Cools and D’Esposito, 2011; Doll et al., 2011). Specifically, the striatum

assumes the role of a gate for relevant versus irrelevant input into

working memory (Badre, 2012; Keeler et al., 2014). High or low energy

barriers of attractor networks within the prefrontal cortex are suggested

to facilitate either shielding or updating of working memory represen-

tations (Durstewitz et al., 2000; Durstewitz and Seamans, 2008). These

barriers are probably adjusted contingent on a prioritisation of percep-

tual input utilising relevance (Summerfield and Egner, 2009; Rauss et al.,

2011).

Accordingly, previous studies found that patients with Parkinson’s

disease (PD), a disorder associated with loss of dopamine neurons in the

substantia nigra, show difficulties in the selection and inhibition of motor

responses (Wylie et al., 2009; Wylie et al., 2010) as well as in cognitive

set-shifting, i.e., shifting or switching between particular

stimulus-response links (Cools et al., 2001; Monchi et al., 2004). More-

over, Galea et al. (2012) showed that during action reprogramming

requiring a switch from an expected to an unexpected response, PD pa-

tients show increased reaction times to unexpected events in contexts of

predictable compared to unpredictable environments.

In the present study, we tested the idea that a dopamine deficit im-

pairs response selection by impeding probabilistic inference over either

flexible or stable states. To this end, we examined learning from different

levels of probabilities of flexibility-demanding versus stability-

demanding prediction errors in healthy controls and patients with

akinetic-rigid PD on and off dopaminergic therapy during a digit pre-

diction task. We used fMRI to assess whether activity in key dopami-

nergic regions varies as a function of learning from prediction errors,

with altered signalling in PD patients. During the task, participants were

required to indicate the occurrence of digit rule switches, as behaviourally

relevant violations leading to an update of the predictive rule (revealing

flexibility), and to ignore short interruptions, referred to as drifts here-

after, as behaviourally irrelevant prediction errors provoking a shielding

of the predictive rule (revealing stability). Importantly, both the absolute

frequency of switch and drift occurrences (prediction errors: predicted

digits) as well as the relative proportion of switch and drift occurrences

(switches: drifts) changed over time. Varying probability and predict-

ability of these events were quantified as decay-dependent information-

theoretic quantities, i.e., surprise and entropy, respectively (Harrison

et al., 2011; see Methods for further details). Our hypotheses were

focused on the effects of decay-dependent surprise, with the latter

modelled as a regressor for analysing both behavioural performance as

well as BOLD time series to assess learning from prediction errors on a

trial-by-trial basis. Decay-dependent entropy was additionally modelled

as a regressor of nuisance.

At first, behavioural data enabled us to test whether probabilistic

inference to derive responses to different types of prediction errors differs

between the groups. We expected that PD patients off medication would

have problems to learn from prediction errors, i.e., to adopt flexible and

stable states depending on the switch and drift probability, respectively

(Friston et al., 2012) (Hypothesis 1, H1). On the neural level, we were

particularly interested in the contribution of brain regions, which are

known to be rich in dopamine, i.e., the substantia nigra and the caudate

nucleus. More specifically, we hypothesised that substantia nigra activity

would be positively modulated by both switch and drift surprise in

controls but not in PD patients off medication, reflecting phasic dopa-

mine release independent of the events’ identity (Redgrave and Gurney,

2006; H€olig and Berti, 2010) (Hypothesis 2, H2). In contrast, we

hypothesised an increased activity of the caudate nucleus as a function of

switch but not drift probability in controls compared with PD patients

due to this regions’ role in adaptive motor responses to prediction errors

modulated by tonic dopamine (Bestmann et al., 2008; Galea et al., 2012;

Marshall et al., 2016) (Hypothesis 3, H3). Finally, provided that dopa-

mine is indeed substantially involved in these effects, learning from

prediction errors should improve with dopaminergic medication in PD

patients, also reflected in a restored surprise-dependent modulation of

neural activation within the respective regions in patients on compared

with patients off medication (Hypothesis 4, H4).

2. Materials and methods

2.1. Participants

Our sample was the same as reported in Trempler et al. (2018). 21

patients (6 females, mean age ¼ 58.81 years, SD ¼ 9.89, range ¼ [40,

72]) meeting the United Kingdom Parkinson’s Disease (UKPD) Society

Brain Bank Criteria for idiopathic Parkinson’s disease (Hughes et al.,

1992) were recruited via the neurologic outpatient clinic of the Univer-

sity Hospital of Cologne, Germany. Hoehn and Yahr ratings ranged be-

tween I and III under regular medication (Hoehn and Yahr, 1967). During

the screening session, the severity of symptoms was further defined ac-

cording to the motor score of the Unified Parkinson’s Disease Rating

Scale (UPDRS) (Fahn and Elton, 1987). Based on the judgment of an

experienced movement disorder specialist, only patients of the

akinetic-rigid subtype were selected. This way, a clinically homogenous

group could be ensured and potential movement artefacts could be

minimised. Moreover, all participants scored between 19 and 30 points

in the Parkinson Neuropsychometric Dementia Assessment (PANDA;

18–30 points ¼ “age adequate cognitive performance”) (Kalbe et al.,

2008) and lower than 19 points in the Beck depression inventory-II

(BDI-II; cut-off for depression: � 20 points) (Hautzinger et al., 2006).

The screening included a training session to ensure that patients would

be able to perform the task under their regular dopaminergic medication.

Patients were tested twice, i.e., once with their regular medication

(“ON”-state) and once without medication (“OFF”-state; after overnight

withdrawal of dopaminergic medication, corresponding to at least 10 h

after the last dose). Session order (OFF-ON and ON-OFF) was counter-

balanced across the participants. Withdrawal affected motor perfor-

mance as seen in a significant difference in UPDRS-score between

patients ON (M ¼ 19.62, SD ¼ 7.48) and OFF (M ¼ 27.14, SD ¼ 9.46),

t(20) ¼ 10.61, p < 0.001. A group of 21 healthy participants (6 females,

mean age ¼ 60.05 years, SD ¼ 10.05, range ¼ [36, 74]) matched to the

patients regarding age and gender served as control subjects. Healthy

controls did not receive anymedication. They performed the training, the

experiment, and all additional assessments on one day. No participant

had undergone neurosurgical treatment for the disease or had a history of

other neurological or psychiatric diseases.

The study was performed following the Declaration of Helsinki and

had been approved by the ethics committee of the Medical Faculty of the

University Hospital Cologne, Germany. Each participant submitted a

signed informed consent notification and received reimbursement for

participation plus travel expenses afterwards.

2.2. Task

During the task, a digit sequence was visually presented at the centre

of a computer screen, in either ascending (1–2 – 3–4) or descending (4–3

I. Trempler et al. NeuroImage 212 (2020) 116674

2



– 2–1) order (Fig. 1). To enable participants to predict forthcoming input,

the sequence was repeated constantly, and digits succeeded one another

for 1 s, separated by an inter-stimulus interval of 100 ms. Directional

changes from ascending to descending digit sequences or vice versa

(switches, hereafter) occurred at pseudorandom ordinal positions within

the initial sequence. Subjects were asked to signal these events via button

press (switch detection). Besides, single digits were omitted occasionally

at variable positions without a temporal gap (drifts, hereafter), and

participants were instructed to ignore these omissions (drift rejection).

Switches and drifts never appeared at the same time, i.e., their occur-

rence was always unambiguous. During a motor control task, which was

implemented to assess the individual mean reaction time, one digit of the

sequence repeated continuously but maximally eight times until the

participant pressed the response button. A total of 25 of these motor

control trials were randomly interleaved across the experiment. A 6 s

presentation of a fixation cross distributed across the experiment in

1.33% of the trials (n ¼ 20) served as the baseline (i.e., rest trial).

To assess adaptation to different environments, the task was binned

into 12 blocks that either had a high or low probability of switches, either

paired with a high or low probability of drifts. Each block consisted of an

average number of 125 trials in a full-factorial 2 (probability: high vs.

low) x 2 (event: switch vs. drift) design. Transitions between block types

resulting from this factor combination were balanced across the session.

Probabilities were based on a pilot study, which assessed the perfor-

mance of 12 PD patients during a staircase procedure of the task with

different switch and drift frequencies. As a result, the maximum event

frequency in unmixed blocks, in which switches and drifts occurred with

the same frequency, was set to 16% (i.e., 8% per event type) and mini-

mum event frequency was set to 8% (i.e., 4% per event type). In mixed

(i.e., high-switch and low-drift or vice versa) blocks, the maximum fre-

quency was set to 12%, whereas the minimum frequency was left at 4%.

In this way, the difficulty level regarding the overall probability of events

was kept constant across the experiment (except for unmixed low-

frequency blocks). Stimulus presentation was pseudorandomised using

the stochastic universal sampling method (Baker, 1987), which ensured a

balanced distribution of switches and drifts across the blocks. Mean

separation of the events was 6.24 (SD ¼ 5.40).

The training consisted of ten blocks of 80 trials each and a probability

of 16% for switch or drift occurrence. To enable participants to get

accustomed to the task, presentation speed started at 1400 ms per digit

and adapted block-wise with a decrease of 50 ms provided that the

participant correctly reacted to 75% of the events. Besides, patients

performed a short training before the scanner session with three blocks of

80 trials at the main experiment’s digit presentation speed of 1 s. The

randomisation was programmed using MATLAB R2012b (The Math-

Works Inc., Natick, MA, USA) and stimuli were presented using Presen-

tation 13.1 (Neurobehavioral Systems, San Francisco, CA, USA).

2.3. Probability model

In a Bayesian cognitive model, an observer’s predictions of

forthcoming sensory input are represented as probability distributions

based on previous sensory input and prior knowledge. Due to the present

task design, in which critical events were per se rather improbable and,

thus, unpredicted as opposed to frequent standard digits, it is not plau-

sible to assume an ideal Bayesian observer, which would base estimation

of probabilities of these events on all previous events. Instead, we sup-

posed that the observer would not be able to remember distant events.

Consequently, we made use of a time-dependent decay model derived

fromHarrison et al. (2011) in which distant events are weighted less than

recent ones. According to their formula, the expectations of an observer’s

model to observe different types of events at trial N are based on the

weighted counts α of each type of event k (switch, drift, or standard digit)

in the preceding trials T ¼ f1;2;…; N � 1g, which are exponentially

weighted by half-life τ:

αkðNÞ¼
X

t 2 T

exp

�

�
N � t � 1

τ

�

δðxt ¼ kÞ

In this formula, δðxt ¼ kÞ is equal to 1 if the event at time t corre-

sponds to event type k and 0 otherwise. Further, it is assumed that trialN-

1 has the weight 1 (i.e., is fully weighted), while the weights of more

distant trials decrease at an exponential rate. Rest trials were neglected

during the counting of the events. The weighted counts were computed

based on the assumption that τ ¼ 125, according to the mean block

length.

The probability of a particular event k occurring at trial N can then be

calculated as (Bernardo and Smith, 2009):

ρkðNÞ¼
αkðNÞ þ αkð0Þ

PK

j¼1αjðNÞ þ αjð0Þ

In words, this probability is characterized by the weighted counts of

event k relative to the sum of the counts of all possible events (switch,

drift, and standard digit). The prior counts αkð0Þ before observing the

first trial were set to 1/3 for all events representing an uninformative

prior (Jeffreys, 1946). Moreover, like previous studies, we used infor-

mation theoretic indices, i.e., surprise and entropy, to quantify the amount

of information provided by the current stimulus that could predict

response accuracy and neural responses (e.g., Strange et al., 2005;

Bestmann et al., 2008; Mars et al., 2008). The surprise IkðNÞ of an event,

i.e., its improbability, is given by the negative logarithm of the

probability:

IkðNÞ¼ � logpkðNÞ

Conversely, entropy measures the average surprise of all possible

events and quantifies the expected information of events regarding their

predictability:

HðNÞ¼ �
X

K

k¼1

ρkðNÞlogρkðNÞ

The varying extent to which each stimulus was locally unexpected,

Fig. 1. Schematic diagram of the task. Stimuli of a

simple 4-digit sequence continuously followed each

other with a duration of 1 s and an inter-stimulus in-

terval of 100 ms. Subjects had to indicate changes from

ascending to descending sequences (and vice versa)

(switch), as displayed in the left row, via a button

press. Moreover, they had to ignore the omission of a

single digit (drift), as displayed in the middle row.

During a motor control task, depicted on the right, one

digit repeated continuously until the participant

pressed the response button. As depicted in the top left

diagram, the probabilities of switches and drifts varied

block-wise across the experiment in a 2x2 design.
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i.e., its respective surprise value (Fig. 2), was used to explain error rates

and fMRI BOLD response amplitudes at switches and drifts. In doing so,

we aimed to assess whether learning differs between the two event types,

and between healthy control participants and PD patients, regarding

behavioural adaptation and its corresponding brain activity.

Finally, we also explored the predictive ability of models based on

counts αkðNÞ weighted by other half-lives (see supplementary material at

https://osf.io/n5ugp/). We used approximate leave-one-out cross-vali-

dation (Vehtari et al., 2017) to compare the predictive ability of the

different models. As detailed in the supplementary material, models

based on a shorter τwere generally better at predicting response accuracy

of both healthy controls and patients by switch and drift surprise; how-

ever, results based on a more extended specification of τ � 125 were

more sensitive to differences between controls and PD patients. Data and

code of these analyses are available in OSF at https://osf.io/n5ugp/.

2.4. fMRI data acquisition

Whole-brain imaging data were collected on a 3 T S Magnetom

Prisma MR tomograph using a TRTX-head coil. To minimise head mo-

tion, the head was tightly fixated with cushions. Functional images were

acquired using a gradient T2*-weighted single-shot echo-planar imaging

(EPI) sequence sensitive to blood oxygenation level dependent (BOLD)

contrast (64 x 64 data acquisition matrix, 192 mm field of view, 90� flip

angle, TR ¼ 2000 ms, TE ¼ 30 ms). Each volume consisted of thirty

adjacent axial slices with a slice thickness of 4 mm and a gap of 1 mm.

Images were acquired in ascending order along the AC-PC plane to pro-

vide a whole-brain coverage. Structural data were acquired for each

participant using a standard Siemens 3D T1-weighted MPRAGE sequence

for a detailed reconstruction of anatomy with isotropic voxels (1 x 1 � 1

mm) in a 256 mm field of view (256 x 256 matrix, 192 slices, TR¼ 2130,

TE ¼ 2.28). Stimuli were projected on a screen positioned behind the

subject’s head and were presented in the centre of the field of vision by a

video-projector. Subjects viewed the screen by a 45� mirror, which was

fixated on the top of the head coil and adjusted for each subject to pro-

vide a good view of the entire screen.

2.5. Behavioural data analysis

We assessed task performance by accurate detection of switches

(hits), and correct non-responses to drifts (correct rejections), or, corre-

spondingly, switch misses and false alarms at drifts. The motor control

task was used to determine the 90%-quantile of each participant’s

reaction times. This quantile served as an individual time window, in

which button presses in response to switches and drifts were acknowl-

edged as hits and false alarms, respectively. Using Bayesian logistic

multilevel models in R (R Core Team, 2018) via the brms package using

Stan (Bürkner, 2017; Carpenter et al., 2017), dichotomous erroneous

responses, i.e., switch misses and false alarms at drifts, were predicted by

decay-dependent information-theoretic indices (i.e., switch surprise and

drift surprise as well as entropy dependent on half-live τ) in interaction

with event type (i.e., switch and drift) and group. As regards the latter,

two separate models were estimated according to our hypotheses, with

differences between controls and PD patients OFF interpreted as effects

of the disease (H1) and differences between PD patients ON and OFF

interpreted as effects of dopamine medication (H4). No comparisons

between controls and patients ON were carried out to avoid a con-

founding of disease and medication effects that might, for instance, relate

to medication side effects. Finally, session was added as a factor to make

sure that differences between controls and PD patients were not driven

by retest-effects in PD patients on their second visit. For a summary of

model parameters, including interaction terms, we report regression

coefficients and 95% credible intervals (CIs; i.e., Bayesian confidence

intervals). This means that there is a 95% probability that the respective

parameter falls within this interval, given the evidence provided by the

data (note that it would indicate statistical significance on a 5% level if

the interval does not contain zero). For the factors group, session and

event type, we used effect coding with �1 for healthy controls and 1 for

patients OFF, �1 for patients ON and 1 for patients OFF, �1 for the first

and 1 for the second session, and�1 for drifts and 1 for switches. Weak or

non-informative default priors of the brms package were used (Bürkner,

2017).

2.6. fMRI data preprocessing

Brain image preprocessing and basic statistical analyses were con-

ducted using SPM12 (Wellcome Department of Imaging Neuroscience,

London, UK; see: http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

Functional images were slice-timed to the middle slice to correct for

differences in slice acquisition time. To correct for three-dimensional

motion, individual functional MR (EPI) images were realigned to the

mean image. Motion correction estimates were inspected visually as

those participants who exceeded a maximum of 3 mm head movements

between two scans in the x, y, and z dimensions would have been

excluded from further analyses. The anatomical scan was co-registered

(rigid body transformation) to the mean functional image. Each sub-

ject’s co-registered anatomical scan was segmented into native space

tissue components. A group-specific template was created using DARTEL

with default settings in SPM12. Functional images were then normalised

to the MNI space by affine transformations using invertible and smooth

deformations (flow fields) for each participant’s native space to the

template derived from the previous step through the DARTEL tool.

Smoothing was also applied during DARTEL warping with a Gaussian

kernel of 8 mm3 full width at half-maximum.

To reduce effects of physiological noise (e.g., due to potential

increased disease-specific motion or pulsatile artefacts in the midbrain),

we performed a denoising procedure on the EPI data using the default

settings of the CONN toolbox in MATLAB (Whitfield-Gabrieli and

Nieto-Castanon, 2012), which implements the anatomical

component-based noise correction method (aCompCor). Denoising

included regressing out the first five principal components associated

with white matter and cerebrospinal fluid as well as the motion param-

eters and their temporal derivatives from the BOLD signal. Finally, a 128

s temporal high-pass filter was applied to the data to remove

low-frequency noise.

2.7. fMRI design specification

The statistical analysis was based on a least-squares estimation using

Fig. 2. Illustration of the decay-dependent information-theoretic measures

surprise, for switches and drifts, and entropy varying throughout the experiment

of one example participant. Surprise and entropy depended on half-live ac-

cording to the mean block length of 125 trials (based on a formula derived from

Harrison et al. (2011)). Surprise values were used to predict the participant’s

performance and BOLD activity at switches and drifts. Dashed vertical lines

reflect boundaries between the different blocks.
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the general linear model (GLM) for serially autocorrelated observations

(Friston et al., 1995; Worsley and Friston, 1995). The GLM included four

regressors coding for onsets and durations of the specific event types, i.e.,

standard digits (std), switches, drifts, and motor control trials, which

were then convolved with the canonical hemodynamic response function

(HRF) and regressed against the observed fMRI data. Moreover, to model

variability in the BOLD amplitude as a function of decay-dependent

surprise and entropy, as outlined in detail above (cf. Probability

model), two parametric modulators each were added to the switch and

the drift regressor, i.e., one for decay-dependent surprise and one for

decay-dependent entropy. We mean-centred each of these modulators

before entering the GLM. Whenever two trials were separated by less

than 2 s (i.e., less than one TR), only the first one was included in the

GLM, whereas the second was not modelled and treated as part of the

implicit baseline. Likewise, resting periods were not modelled and served

as an implicit baseline (Pernet, 2014). The subject-specific six rigid-body

transformations obtained from residual motion correction were included

as covariates of no interest.

To ensure that neural activity during switches and drifts generally

exceeded activation during standard digits, we conjoined one-sample t-

tests of the contrasts switch > std and drift > std of healthy controls and

PD patients OFF. To this end, the corresponding beta images per partic-

ipant were submitted to a second-level two-way analysis of variance to

perform a conjunction analysis testing against the conjunction null hy-

pothesis (p(peak-level FWE) < 0.05, Nichols et al., 2005). Moreover,

individual statistical maps for variations of BOLD amplitudes with sur-

prise at switches and drifts were generated for each participant. We

performed region of interest (ROI) analyses to test for BOLD activation

differences between the groups in the substantia nigra and the caudate

nucleus. The substantia nigra ROIs were derived from the probabilistic

atlas of the basal ganglia (ATAG; Keuken et al., 2014). Anatomically

defined ROIs of the left and right caudate nucleus were derived from the

automated anatomical labelling (AAL) atlas and created using the SPM

Wake Forest University (WFU) Pickatlas toolbox (http://www.fmri.wfub

mc.edu/cms/software, version 2.3) (Maldjian et al., 2003). For the ROI

analyses, we extracted the beta scores of switch and drift surprise and

corresponding standard errors per voxel and subject. Using Bayesian

linear multilevel models in R (R Core Team, 2018) via brms and Stan with

default priors (Bürkner, 2017; Carpenter et al., 2017), we predicted these

beta scores by event type, group, session, and ROI (left and right caudate

nucleus and substantia nigra) while accounting for dependencies be-

tween responses belonging to the same voxel or subject. Furthermore,

varying degrees of uncertainty in the beta scores (i.e., varying standard

errors) were accounted for by using an inverse-variance weighting

scheme with more precisely estimated scores receiving higher weight

(Cooper et al., 2009; https://osf.io/n5ugp/). We tested hypothesised

differences in the beta values in the selected ROIs between healthy

controls and PD patients OFF, and between PD patients OFF and ON. The

α-level was set to 5%, with a 90% CI for directional hypotheses. Further,

in addition to regression coefficients and CIs, we report the posterior

probability (pp) that the differences in neural activation between the

groups show in the expected directions.

3. Results

3.1. Behavioural results

Bayesian logistic multilevel models on surprise and entropy estimates

that depended on decay half-life τ (cf. Probability model) were used to

predict behavioural errors, that is, switch misses and false alarms at drifts

of healthy controls versus PD patients off medication, and PD patients on

versus off medication. We found that the modulation of error rate by

decay-dependent surprise and entropy depended on event type and

group. Although there was no main effect of switch and drift surprise

across the groups, the results are in accordance with H1 by revealing an

interaction effect of SWITCH SURPRISE X GROUP X EVENT TYPE, as well as an

interaction effect of DRIFT SURPRISE X GROUP X EVENT TYPE: In controls, higher

probability, i.e., lower surprise of switches led to more switch hits,

whereas in PD patients OFF the rate of switch hits increased as a function

of switch surprise. In contrast, while drift surprise did not modulate the

error rate of healthy controls at drifts, the false alarm rate of PD patients

OFF increased as a function of drift surprise (Fig. 3). Moreover, we

observed that increasing entropy affected the error rate at switches more

than at drifts in healthy controls only. Independently of their medication,

PD patients revealed an interaction effect of DRIFT SURPRISE X EVENT TYPE, i.e.,

increasing drift surprise was accompanied by a higher rate of false alarms

at drifts but also a lower rate of switch misses in both PD patients on and

off medication. However, there were no differences between the medi-

cation states. Regression coefficients and corresponding 95% CIs for each

predictor variable of the two models are given in Table 1 for controls and

PD patients off medication and in Table 2 for PD patients on and off

medication.

3.2. fMRI results

Main effects of switches and drifts. To first identify the network

associated with prediction error processing in general, we run a

conjunction analysis on the statistical maps of the two groups and the two

tasks, i.e., of healthy controls and PD patients OFF during switch and drift

processing [controls (switch> std) \ controls (drift> std) \ patients OFF

(switch> std) \ patients OFF (drift> std)]. This analysis revealed higher

activations in a network comprising - amongst others - the inferior pa-

rietal cortex as well as the inferior frontal gyrus extending into the

anterior insula during switches and drifts compared to standard digits

(Table 3) (Fig. 4).

Parametric effects of decay-dependent surprise. Bayesian linear

multilevel models were employed to test our hypotheses (H2–H4) that

decay-dependent surprise at switches and drifts modulated the BOLD

response in defined ROIs, i.e., the substantia nigra and the caudate nu-

cleus, differently in controls and PD patients OFF and ON. Thus, corre-

sponding to the reported error rate effects, we addressed the

hypothesised differences between healthy controls and PD patients OFF,

and between PD patients ON and OFF.

In line with H2, the right substantia nigra activity showed a positive

correlation with switch surprise in controls but not in patients off

medication, R: bHC-OFF ¼ 55.1, 90%-CI ¼ [3.49, 106.07], pp(b > 0) ¼

0.96; L: bHC-OFF ¼ 1.05, 90%-CI ¼ [-54.15, 57.26], pp(b > 0) ¼ 0.51.

Regarding a modulation by drift surprise, parameter estimates were close

to zero in both groups, that is, no differences between healthy controls

and patients OFF were observed, R: bHC-OFF ¼ 20.68, 90%-CI ¼ [-21.65,

63.16], pp(b > 0) ¼ 0.79; L: bHC-OFF ¼ 5.80, 90%-CI ¼ [-28.86, 40.80],

pp(b > 0) ¼ 0.61 (Fig. 5, top-left panel).

In support of H3, caudate nucleus activity covaried positively with

switch probability in controls but not in PD patients OFF, L (left): bHC-OFF
¼�56.85, 90%-CI¼ [-123.21, 9.21], pp(b< 0)¼ 0.92; R (right): bHC-OFF
¼ �43.00, 90%-CI ¼ [-96.45, 11.55], pp(b < 0) ¼ 0.90. In contrast, we

found a positive covariation of drift surprise with caudate activity and

there were no clear differences between the groups, L: bHC-OFF ¼ 24.74,

90%-CI ¼ [-29.85, 81.19]; R: bHC-OFF ¼ 11.41, 90%-CI ¼ [-45.56, 69.44]

(Fig. 5, top-right panel).

Contrary to hypothesis H4, we did not find differences between PD

patients ON and OFF in the substantia nigra for switch surprise, R: bON-

OFF ¼ 21.4, 90%-CI ¼ [-23.39, 69.65], pp(b < 0) ¼ 0.78; L: bON-OFF ¼

0.70, 90%-CI ¼ [-46.58,49.47], pp(b < 0) ¼ 0.51. Likewise, modulation

by drift surprise did not differ between the groups, R: bON-OFF ¼ 4.68,

90%-CI¼ [-37.91, 47.06], pp(b < 0)¼ 0.57; L: bON-OFF¼ 2.35, 90%-CI¼

[-36.03, 40.07], pp(b < 0) ¼ 0.54 (Fig. 5, bottom-left panel).

Regarding the caudate nucleus, medication did not restore the neural

activation within this region. Instead, right caudate nucleus covaried

positively with switch surprise in patients on compared to patients off

medication, L: bON-OFF ¼ 16.44, 90%-CI ¼ [-42.49, 75.72], pp(b < 0) ¼

0.32; R: bON-OFF ¼ 47.21, 90%-CI ¼ [0.97, 93.29], pp(b < 0) ¼ 0.05. No
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differences in the modulation by drift surprise were observed, L: bON-OFF
¼ 22.1, 90%-CI ¼ [-36.75, 82.40]; R: bON-OFF ¼ 8.69, 90%-CI ¼ [-33.37,

50.22] (Fig. 5, bottom-right panel).

4. Discussion

The present fMRI study aimed at gaining insight into the potential

involvement of dopamine in learning from prediction errors requiring

either flexible updating or stabilisation of current predictions. We

addressed this issue by comparing the effects of prediction error proba-

bility based on a specific decay half-live on performance and activity in

key dopaminergic regions of healthy control participants and PD patients

on and off dopaminergic medication during a digit prediction task. We

found that in healthy participants but not in PD patients increasing

decay-dependent probability, that is, lower surprise of flexibility-

demanding violations of a predictable digit sequence (i.e., switches) was

accompanied by a better switch detection (H1). Contrary to our hy-

pothesis (H4), there were no performance differences between PD pa-

tients on and off medication. On the neural level, we observed a deficient

modulation of decay-dependent surprise of these violations by the right

substantia nigra (H2) and the caudate nucleus (H3) in PD patients off

medication, but no changes of surprise responses under medication (H4).

In the following, we will discuss our behavioural findings on impaired

probability-dependent responding in PD patients, and will then go into

more detail regarding our fMRI results.

Error rates of healthy controls and PD patients at switches were

differentially affected by changes in the time-dependent probability of

these event occurrences. Healthy participants detected more switches

when switch probability within a certain time frame became particularly

high. In contrast, PD patients, no matter whether on or off medication,

reacted less flexibly to switches when these became more probable and

thus did not adapt to high probability conditions. This finding indicates

Fig. 3. Behavioural data. Effect of mean-centred decay-dependent drift surprise (left panel) and switch surprise (right panel) on error rate at drifts, i.e., false alarms,

and at switches, i.e., misses, in healthy controls (HC) and PD patients off medication (top panel) and in PD patients off and on medication (lower panel). The solid lines

depict the regression fit, and the shaded areas show the 95% credibility intervals.

Table 1

Bayesian logistic multilevel model predicting errors (i.e., switch misses and drift

false alarms) of healthy controls and PD patients OFF.

Coefficient b l-95%

CI

u-95%

CI

Switch surprise 0.04 �0.85 0.93

Drift surprise 0.55 �0.29 1.38

Entropy 3.18 �1.99 8.28

Group: PD patients OFF 2.06 �0.53 4.61

Event type: Switch �1.35 �3.86 1.20

Session: Second �0.05 �0.43 0.31

Switch surprise x Group: PD patients OFF �0.24 �1.10 0.66

Drift surprise x Group: PD patients OFF �0.62 �1.41 0.20

Entropy x Group: PD patients OFF �3.47 �8.42 1.63

Switch surprise x Event type: Switch 0.39 �0.47 1.23

Drift surprise x Event type: Switch �0.13 �0.94 0.67

Entropy x Event type: Switch 3.32 �1.69 8.28

Group: PD patients OFF x Event type: Switch 3.09 0.56 5.62

Switch surprise x Group: PD patients OFF x Event

type: Switch

�1.21 �2.06 �0.34

Drift surprise x Group: PD patients OFF x Event

type: Switch

�0.96 �1.78 �0.15

Entropy x Group: PD patients OFF x Event type:

Switch

�6.16 �11.16 �1.15

Table 2

Bayesian logistic multilevel model predicting errors (i.e., switch misses and drift

false alarms) of PD patients ON and OFF.

Coefficient b l-95%

CI

u-95%

CI

Switch surprise �0.41 �1.23 0.41

Drift surprise �0.16 �0.92 0.58

Entropy �1.30 �5.87 3.23

Group: PD patients ON 0.33 �1.94 2.68

Event type: Switch 1.16 �1.09 3.41

Session: Second 0.00 0.08 �0.08

Switch surprise x Group: PD patients ON �0.10 �0.87 0.66

Drift surprise x Group: PD patients ON �0.06 �0.83 0.69

Entropy x Group: PD patients ON �0.67 �5.34 3.83

Switch surprise x Event type: Switch �0.73 �1.49 0.05

Drift surprise x Event type: Switch �0.79 �1.50 �0.08

Entropy x Event type: Switch �1.67 �6.15 2.80

Group: PD patients ON x Event type: Switch �0.53 �2.71 1.73

Switch surprise x Group: PD patients ON x Event

type: Switch

0.05 �0.72 0.79

Drift surprise x Group: PD patients ON x Event

type: Switch

0.26 �0.46 0.97

Entropy x Group: PD patients ON x Event type:

Switch

1.06 �3.43 5.40
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that PD patients are impaired in anticipating flexibility-demanding

environmental changes due to difficulties in probabilistic learning.

Thereby, this result supports recent studies reporting deficits in implicit

contextual learning in PD patients (Perugini et al., 2016; Perugini and

Basso, 2017) and extends previous results implicating dopamine in

flexible responses to sensory prediction errors by suggesting a corre-

sponding impairment in PD (Galea et al., 2012; Iglesias et al., 2013).

However, since medication did not restore this deficit, further transmitter

systems may be involved in learning to adjust one’s behaviour to

changing contextual demands (see below).

We found some evidence that PD patients compared with healthy

controls are more susceptible to respond to rare, that is, highly surprising

stability-demanding prediction errors requiring motor inhibition.

Notably, previous research showed enhanced instead of lower distractor-

resistance in PD patients (Cools et al., 2009). However, this alleged

advantage in PD patients possibly results from inflexibility rather than

active stabilisation (Uitvlugt et al., 2016). In the present study, the pa-

tients’ inflexibility (and alleged stability) in reacting to sequential vio-

lations in general had a particular impact upon high-probability

conditions, whereas PD patients became more prone to deliver responses

when stimuli became more surprising – no matter whether these stimuli

required a motor response or not. By that, the patients’ somewhat arbi-

trary responses to rare unpredicted events reflected a deficient response

selection (Humphries et al., 2006). Together, our behavioral findings

thus indicate that PD patients have deficits in distinguishing between and

learning from different types of unexpected events requiring either sta-

bilisation or updating of prediction.

On the neural level, the right substantia nigra activity showed a

positive correlation with switch surprise in controls but not in patients off

medication. This reflects, in turn, a decrease of neural activity in the

course of more frequent event occurrence, which has been regarded as a

sign of learning (Turk-Browne et al., 2010; Schiffer et al., 2012). Paral-

leling our behavioural findings, learning from flexibility-demanding

prediction errors in high-probability conditions thus appears to be

accompanied by a relative activation decrease within the substantia nigra

in healthy subjects, whereas there was no modulation of activity within

this region in PD patients. Although this finding is in accordance with a

broad literature reporting prediction error coding and learning in the

midbrain dopaminergic nuclei (e.g. Schultz and Dickinson, 2000; Red-

grave and Gurney, 2006; D’Ardenne et al., 2012), recent fMRI and PET

studies report that substantia nigra specifically encode belief updates

(i.e., Bayesian surprise) but not sensory (information-theoretic) surprise,

that is, pure unexpectedness (Nour et al., 2018; Schwartenbeck et al.,

2016). Accordingly, our finding can be explained by the behavioural gain

that results from an adaptation to local environmental challenges by

learning dynamically changing probabilities of unexpected events over a

specific time scale. Moreover, contrary to our hypothesis, substantia

nigra activity was not modulated by drift surprise in either group, sug-

gesting that decay-dependent surprise signals within this region are

specific to flexibility-demanding violations and thus indeed process in-

formation content rather than unexpectedness per se.

In healthy controls but not in PD patients off medication, BOLD am-

plitudes in the caudate nucleus increased with a higher probability of

switch occurrence. The involvement of the caudate nucleus in predictive

processing of flexibility-demanding events extends findings from previ-

ous fMRI studies and computational models that highlight striatal sig-

nalling in delivering gating input to frontal areas to allow flexible

updating of cortical representations, possibly modulated by dopamine

(e.g., O’Reilly and Frank, 2006; Stelzel et al., 2013). Notably, our results

reveal evidence for a caudate activation increase as a function of drift

surprise in healthy participants (instead of a decrease as was the case for

switch surprise). This could indicate that environments in which

stability-demanding events become more probable rather lead to a

decrease in striatal signalling but, concurrently, increased striatal firing

rates when events are highly unexpected. Although this is speculative,

the direction of the reported correlations could be accounted for by the

relationship between phasic and tonic dopamine release (Grace, 1991). It

is suggested that dopaminergic neurons do not only respond to unpre-

dicted events per se but also encode their precision by tonic dopamine

release over longer time scales (Fiorillo et al., 2008; Friston et al., 2012).

Therefore, the reciprocal relationship between anticipation and surprise

with respective increased neural responses to predicted and unpredicted

events might reflect tonic and phasic dopamine signals, respectively

(Schmitz et al., 2003; O’Reilly and Frank, 2006; Yu et al., 2013).

Table 3

Maxima of activation from the conjunction analysis of the contrast images of

switch > std and drift > std of healthy controls and PD patients off medication at

p < 0.05 peak-level FWE-corrected. Labels are reported according to the AAL

atlas. Entries in italics indicate sub-peak regions that are more than 8 mm apart

within a cluster. MNI, Montreal Neurological Institute.

Region Label Cluster

Extent

t-

value

MNI Coordinates

x y z

Right Inferior Parietal Lobule 785 13.02 45 �39 45

Superior Occipital Gyrus 9.29 33 �66 42

Precuneus 7.15 9 �66 51

Left Inferior Parietal Lobule 645 12.37 �39 �45 42

Superior Parietal Gyrus 9.84 �27 �66 45

Right Inferior Frontal Gyrus (pars

opercularis)

852 11.38 48 9 21

Superior Frontal Gyrus 9.20 27 6 57

Left Precentral Gyrus 1425 11.01 �45 6 30

Supplementary Motor Area 10.98 �6 9 51

Right Insula 123 9.68 36 24 �3

Left Cerebellum 131 8.99 �6 �78 �27

Right Cerebellum 70 8.10 30 �63 �27

Left Precuneus 33 6.95 �6 �69 �48

Right Middle Temporal Gyrus 23 6.54 57 �51 �9

Right Lingual Gyrus 7 6.15 9 �24 �12

Right Thalamus 9 6.07 12 �9 0

Left Inferior Temporal Gyrus 1 5.48 �51 �57 �9

Left Inferior Frontal Gyrus (pars

triangularis)

2 5.38 �54 18 �3

Left Thalamus 2 5.28 �15 �9 3 Fig. 4. fMRI activation at p < 0.05, peak-level FWE-corrected threshold for the

conjunction analysis identifying the brain regions that were more active during

switches and drifts relative to standard digits in both healthy controls and PD

patients off medication.
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Crucially, the dopaminergic medication did not restore learning from

prediction errors, suggesting that not dopamine supply alone can explain

the reported effects. Previous studies reported on heterogenous findings

regarding the impact of dopaminergic therapy on learning. Studies

demonstrate effects of medication on locomotor (Roemmich et al., 2014)

and sensorimotor (Wolpe et al., 2018) adaptive learning as well as on

reinforcement learning, but with mixed results on whether medication

has beneficial and/or detrimental effects (e.g., Frank et al., 2004; B�odi

et al., 2009; Argyelan et al., 2018; McCoy et al., 2019; see Meder et al.,

2019, for a recent review). Similarly, with regard to uncertainty learning,

i.e., when decisions are based on the integration of prior and current

sensory information, some studies report an improvement due to dopa-

minergic medication (Wolpe et al., 2015; Vilares and Kording, 2017;

Tomassini et al., 2019), while others did not find differences between PD

patients on and off medication (Perugini and Basso, 2017; see Perugini

et al., 2018).

It has been suggested that dopamine deficiency reduces the modu-

lation of performance rather than learning itself (e.g., Beeler et al., 2010;

Smittenaar et al., 2012). Accordingly, a recent fMRI study found that

activation of the dorsal striatum associated with the decision event in a

stimulus-response learning task increased on dopaminergic medication,

whereas signals of the ventral striatum related to learning during a

feedback event was depressed by medication (Hiebert et al., 2019). Thus,

the particular role of dopamine in learning from prediction errors might

consist in the modulation of correct response selection by exploiting

already learned uncertainty representations (Beeler et al., 2010; Marshall

et al., 2016). In contrast, signals of environmental uncertainty might

rather be encoded by other neurotransmitters such as noradrenaline or

acetylcholine (Yu and Dayan, 2002, 2005; Marshall et al., 2016). For

example, the hippocampus has been associated with contextual learning

by extracting statistical information to create a representation of the

environmental volatility (Schapiro et al., 2014; Kluger and Schubotz,

2017). Hippocampal dysfunction in PD has been associated with

cholinergic loss resulting in deficits in learning and memory, i.e., a pro-

gression towards dementia (Hall et al., 2014). Moreover, previous work

highlights the role of noradrenaline depletion due to neuron loss within

the locus coeruleus in PD, accompanied by cognitive inflexibility (Dela-

ville et al., 2011; Vazey and Aston-Jones, 2012) and impaired inhibitory

control (Borchert et al., 2016; Rae et al., 2016). Using fMRI, Ye et al.

(2015) could show that PD patients’ improvement in inhibitory control

on atomoxetine, a noradrenaline reuptake inhibitor, was associated with

increased functional and structural frontostriatal connectivity. Moreover,

the authors could show that these beneficial effects on task performance

could also be predicted by the patients’ levodopa equivalent daily dose

(Ye et al., 2016).

These findings suggest that dopamine release interacts with other

neurotransmitter systems and possibly is affected by and influences un-

certainty representations by means of the sensory inputs’ goal relevance

(Picciotto et al., 2012; Mizumori and Tryon, 2015; Aly and Turk-Browne,

2018). In the present study, we therefore assume that dopaminergic

drugs do not enhance learning signals because these are rather provided

by other neuromodulators. As a result, predictive strategies cannot be

adapted to increasing demands on flexibility, resulting in a suboptimal

performance. However, to exhibit the contribution of dopamine to

impaired learning in PD, future studies with direct neural recordings

should measure dopaminergic neuron responses to prediction errors of

varying precision, for example in patients undergoing deep brain stim-

ulation surgery.

Although not part of the hypotheses, it should be noted that increased

time-dependent drift probability also improved flexible responding to

switches; that is, both increased half-life weighted switch and drift

occurrence led to better detection of switches in healthy subjects. Thus,

contextual learning seems to rely on teaching signals provided by all

types of violations but ultimately only impacts upon the motor response

Fig. 5. Region of interest fMRI data. Beta estimates of the continuous modulation of activity in the left (L) and right (R) substantia nigra (SN), and caudate nucleus

(Caud), by decay-dependent surprise at switches and drifts in healthy controls (HC) and PD patients off medication (top panel) and in PD patient off and on medication

(lower panel).
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to flexibility-demanding events. This finding supports previous accounts,

according to which dopamine sensitises behaviour to higher-level pre-

cision estimates by highlighting surprising input in predictable contexts

(Bestmann et al., 2014; Marshall et al., 2016). Because each violation

elicited changes in both tracked measures, i.e., in switch as well as drift

surprise, future studies could also investigate the effect of switch and

drift surprise (and their interaction) on BOLD response at drifts and

switches, respectively. Accordingly, we acknowledge that both switches

and drifts are relevant for updating the expectation of long-run future

event occurrence and are thus not qualitatively different in every respect.

However, although the same process likely achieves learning of drift and

switch probabilities, our findings suggest that the effects of this learning

on appropriate response selection to the two event types differ. Further

research is warranted to disentangle the specific processes related to

uncertainty learning on the one hand and response selection on the other

hand.

Finally, it is of importance to acknowledge the dependency of the

present results on the time scale (i.e., half-life τ) we used to fit the

probability model. Our exploratory results suggest that different tem-

poral scales differentially impact on behavioural and neural responses

(see supplementary material at https://osf.io/n5ugp/) so that the present

results on differences between the groups in integrating past events must

be considered against the background of the half-life we selected ac-

cording to our experimental manipulation. It would have exceeded the

scope of the present study to estimate individual half-lives, that is, to

investigate individual differences in time scales over which sensory in-

formation is actually accumulated, but we consider this to be an impor-

tant question of future research. In line with that, it has been suggested

that the hierarchical organisation of the cortex is determined by specific

time scales over which information is aggregated (Kiebel et al., 2008;

Harrison et al., 2011). Moreover, subjects differ concerning the number

of samples they use when coding probabilities (Trempler et al., 2017) and

the time they spend within one representational state (Vidaurre et al.,

2017). Further studies could investigate whether PD patients also

represent probabilities of upcoming flexibility- and stability-demanding

sensory input but on a different (probably shorter) time scale, as our

additional analyses suggest. Moreover, it is reasonable to assume that the

accumulated evidence for an event to occur probably consists of an

interplay of its absolute probability and the time elapsed since its last

occurrence. Previous studies provided evidence for the role of dopamine

in gathering information from the passage of time (Pasquereau and

Turner, 2014; Tomassini et al., 2016; Tomassini et al., 2019). Thus,

future studies should elaborate on the dopaminergic modulation of

learning from either flexibility- or stability-demanding prediction errors

by taking temporal dynamics of prediction formation into account.

In sum, our study provides evidence that altered decay-dependent

surprise-driven learning signals in the substantia nigra and the caudate

nucleus, though unaffected by dopaminergic therapy, contribute to a

deficient adaptation of behaviour in response to flexibility-demanding

surprising events in PD. These findings provide novel insight into the

specificity of dopamine in exploiting learning and corresponding deficits

in PD.

Declaration of competing interest

The authors declare that they have no conflict of interest.

CRediT authorship contribution statement

Ima Trempler: Conceptualization, Methodology, Investigation,

Formal analysis, Data curation, Writing - original draft. Paul-Christian

Bürkner:Methodology, Formal analysis, Data curation, Writing - review

& editing. Nadiya El-Sourani: Conceptualization, Investigation, Writing

- review & editing. Ellen Binder: Investigation, Writing - review &

editing. Paul Reker: Investigation,Writing - review& editing.Gereon R.

Fink: Conceptualization, Methodology, Supervision, Funding

acquisition, Writing - review & editing. Ricarda I. Schubotz: Concep-

tualization, Methodology, Supervision, Funding acquisition, Writing -

review & editing.

Acknowledgments

We sincerely thank the participants involved in the current investi-

gation and the German Research Foundation for financially supporting

the project (Clinical Research Group KFO219 “Basal-Ganglia-Cortex-

Loops: Mechanisms of Pathological Interactions and Therapeutic Modu-

lation”, SCHU 1439/5-2). Moreover, we are grateful to David Meder and

two other anonymous reviewers for their valuable and constructive

comments.

References

Aly, M., Turk-Browne, N.B., 2018. Flexible weighting of diverse inputs makes

hippocampal function malleable. Neurosci. Lett. 680, 13–22.

Argyelan, M., Herzallah, M., Sako, W., DeLucia, I., Sarpal, D., Vo, A., et al., 2018.

Dopamine modulates striatal response to reward and punishment in patients with

Parkinson’s disease: a pharmacological challenge fMRI study. Neuroreport 29 (7),

532.

Badre, D., 2012. Opening the gate to working memory. Proc. Natl. Acad. Sci. U. S. A 109,

19878–19879.

Baker, J.E., 1987. Reducing bias and inefficiency in the selection algorithm. In:

Proceedings of the Second International Conference on Genetic Algorithms and their

Application, pp. 14–21.

Barter, J.W., Li, S., Lu, D., Bartholomew, R.A., Rossi, M.A., Shoemaker, C.T., et al., 2015.

Beyond reward prediction errors: the role of dopamine in movement kinematics.

Front. Integr. Neurosci. 9, 39.

Beeler, J.A., Daw, N., Frazier, C.R., Zhuang, X., 2010. Tonic dopamine modulates

exploitation of reward learning. Front. Behav. Neurosci. 4, 170.

Beeler, J.A., Frank, M.J., McDaid, J., Alexander, E., Turkson, S., Bernandez, M.S., et al.,

2012. A role for dopamine-mediated learning in the pathophysiology and treatment

of Parkinson’s disease. Cell Rep. 2 (6), 1747–1761.

Behrens, T.E., Woolrich, M.W., Walton, M.E., Rushworth, M.F., 2007. Learning the value

of information in an uncertain world. Nat. Neurosci. 10, 1214–1221.

Bernardo, J.M., Smith, A.F., 2009. Bayesian Theory, vol.405. John Wiley & Sons.

Bestmann, S., Harrison, L.M., Blankenburg, F., Mars, R.B., Haggard, P., Friston, K.J.,

Rothwell, J.C., 2008. Influence of uncertainty and surprise on human corticospinal

excitability during preparation for action. Curr. Biol. 18 (10), 775–780.

Bestmann, S., Ruge, D., Rothwell, J., Galea, J.M., 2014. The role of dopamine in motor

flexibility. J. Cognit. Neurosci. 27 (2), 365–376.

B�odi, N., K�eri, S., Nagy, H., Moustafa, A., Myers, C.E., Daw, N., et al., 2009. Reward-

learning and the novelty-seeking personality: a between-and within-subjects study of

the effects of dopamine agonists on young Parkinson’s patients. Brain 132 (9),

2385–2395.

Borchert, R.J., Rittman, T., Passamonti, L., Ye, Z., Sami, S., Jones, S.P., et al., 2016.

Atomoxetine enhances connectivity of prefrontal networks in Parkinson’s disease.

Neuropsychopharmacology 41 (8), 2171.

Bürkner, P.C., 2017. brms: an R package for Bayesian multilevel models using Stan.

J. Stat. Software 80 (1), 1–28.

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., et al.,

2017. Stan: a probabilistic programming language. J. Stat. Software 76 (1), 1–32.

Cools, R., Barker, R.A., Sahakian, B.J., Robbins, T.W., 2001. Mechanisms of cognitive set

flexibility in Parkinson’s disease. Brain 124 (12), 2503–2512.

Cools, R., Miyakawa, A., Sheridan, M., D’Esposito, M., 2009. Enhanced frontal function in

Parkinson’s disease. Brain 133 (1), 225–233.

Cools, R., D’Esposito, M., 2011. Inverted-U-shaped dopamine actions on human working

memory and cognitive control. Biol. Psychiatr. 69, e113–e125.

Cooper, H., Hedges, L.V., Valentine, J.C. (Eds.), 2009. The Handbook of Research

Synthesis and Meta-Analysis. Russell Sage Foundation.

D’Ardenne, K., Eshel, N., Luka, J., Lenartowicz, A., Nystrom, L.E., Cohen, J.D., 2012. Role

of prefrontal cortex and the midbrain dopamine system in working memory updating.

Proc. Natl. Acad. Sci. U. S. A 109, 19900–19909.

Delaville, C., De Deurwaerd�ere, P., Benazzouz, A., 2011. Noradrenaline and Parkinson’s

disease. Front. Syst. Neurosci. 5, 31.

Doll, B.B., Hutchison, K.E., Frank, M.J., 2011. Dopaminergic genes predict individual

differences in susceptibility to confirmation bias. J. Neurosci. 31 (16), 6188–6198.

Durstewitz, D., Seamans, J.K., Sejnowski, T.J., 2000. Neurocomputational models of

working memory. Nat. Neurosci. 3, 1184–1191.

Durstewitz, D., Seamans, J.K., 2008. The dual-state theory of prefrontal cortex dopamine

function with relevance to catechol-o-methyltransferase genotypes and

schizophrenia. Biol. Psychiatr. 64, 739–749.

Fahn, S., Elton, R.L., 1987. Unified rating scale for Parkinson’s disease. Recent Dev.

Parkinson’s Dis. 153–163.

Fiorillo, C.D., Newsome, W.T., Schultz, W., 2008. The temporal precision of reward

prediction in dopamine neurons. Nat. Neurosci. 11 (8), 966.

Fiser, J., Berkes, P., Orb�an, G., Lengyel, M., 2010. Statistically optimal perception and

learning: from behavior to neural representations. Trends Cognit. Sci. 14 (3),

119–130.

I. Trempler et al. NeuroImage 212 (2020) 116674

9



Frank, M.J., Seeberger, L.C., O’Reilly, R.C., 2004. By carrot or by stick: cognitive

reinforcement learning in parkinsonism. Science 306 (5703), 1940–1943.

Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S.J.,

1995. Statistical parametric maps in functional imaging: a general linear approach.

Hum. Brain Mapp. 2, 189–210.

Friston, K.J., Shiner, T., FitzGerald, T., Galea, J.M., Adams, R., Brown, H., et al., 2012.

Dopamine, affordance and active inference. PLoS Comput. Biol. 8 (1), e1002327.

Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., Dolan, R.J.,

2014. The anatomy of choice: dopamine and decision-making. Phil. Trans. R. Soc. B

369 (1655), 20130481.

Galea, J.M., Bestmann, S., Beigi, M., Jahanshahi, M., Rothwell, J.C., 2012. Action

reprogramming in Parkinson’s disease: response to prediction error is modulated by

levels of dopamine. J. Neurosci. 32 (2), 542–550.

Grace, A.A., 1991. Phasic versus tonic dopamine release and the modulation of dopamine

system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41

(1), 1–24.

Hall, H., Reyes, S., Landeck, N., Bye, C., Leanza, G., Double, K., et al., 2014. Hippocampal

Lewy pathology and cholinergic dysfunction are associated with dementia in

Parkinson’s disease. Brain 137 (9), 2493–2508.

Harrison, L., Bestmann, S., Rosa, M.J., Penny, W., Green, G.G., 2011. Time scales of

representation in the human brain: weighing past information to predict future

events. Front. Hum. Neurosci. 5, 37.

Hautzinger, M., Keller, F., Kühner, C., 2006. Beck Depressions-Inventar (BDI-II). Harcourt

Test Services, Frankfurt.

Hiebert, N.M., Owen, A.M., Ganjavi, H., Mendonça, D., Jenkins, M.E., Seergobin, K.N.,

MacDonald, P.A., 2019. Dorsal striatum does not mediate feedback-based, stimulus-

response learning: an event-related fMRI study in patients with Parkinson’s disease

tested on and off dopaminergic therapy. Neuroimage 185, 455–470.

Hoehn, M.M., Yahr, M.D., 1967. Parkinsonism: onset, progression, and mortality.

Neurology 17 (5), 427-427.

H€olig, C., Berti, S., 2010. To switch or not to switch: brain potential indices of attentional

control after task-relevant and task-irrelevant changes of stimulus features. Brain Res.

1345, 164–175.

Hughes, A.J., Daniel, S.E., Kilford, L., Lees, A.J., 1992. Accuracy of clinical diagnosis of

idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol.

Neurosurg. Psychiatr. 55 (3), 181–184.

Humphries, M.D., Stewart, R.D., Gurney, K.N., 2006. A physiologically plausible model of

action selection and oscillatory activity in the basal ganglia. J. Neurosci. 26 (50),

12921–12942.

Humphries, M.D., Khamassi, M., Gurney, K., 2012. Dopaminergic control of the

exploration-exploitation trade-off via the basal ganglia. Front. Neurosci. 6, 9.

Iglesias, S., Mathys, C., Brodersen, K.H., Kasper, L., Piccirelli, M., den Ouden, H.E.,

Stephan, K.E., 2013. Hierarchical prediction errors in midbrain and basal forebrain

during sensory learning. Neuron 80 (2), 519–530.

Jeffreys, H., 1946. An invariant form for the prior probability in estimation problems.

Proc. Roy. Soc. Lond. Math. Phys. Sci. 186 (1007), 453–461.

Kalbe, E., Calabrese, P., Kohn, N., Hilker, R., Riedel, O., Wittchen, H.U., Dodel, R.,

Otto, J., Ebersbach, G., Kessler, J., 2008. Screening for cognitive deficits in

Parkinson’s disease with the Parkinson neuropsychometric dementia assessment

(PANDA) instrument. Park. Relat. Disord. 14 (2), 93–101.

Keeler, J.F., Pretsell, D.O., Robbins, T.W., 2014. Functional implications of dopamine D1

vs. D2 receptors: a ‘prepare and select’model of the striatal direct vs. indirect

pathways. Neuroscience 282, 156–175.

Keuken, M.C., Bazin, P.L., Crown, L., Hootsmans, J., Laufer, A., Müller-Axt, C., Sier, R.,

van der Putten, E.J., Sch€afer, A., Turner, R., Forstmann, B.U., 2014. Quantifying inter-

individual anatomical variability in the subcortex using 7 T structural MRI.

Neuroimage 94, 40–46.

Kiebel, S.J., Daunizeau, J., Friston, K.J., 2008. A hierarchy of time-scales and the brain.

PLoS Comput. Biol. 4 (11), e1000209.

Kluger, D.S., Schubotz, R.I., 2017. Strategic adaptation to non-reward prediction error

qualities and irreducible uncertainty in fMRI. Cortex 97, 32–48.

Maldjian, J.A., Laurienti, P.J., Kraft, R.A., Burdette, J.H., 2003. An automated method for

neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.

Neuroimage 19 (3), 1233–1239.

Mars, R.B., Debener, S., Gladwin, T.E., Harrison, L.M., Haggard, P., Rothwell, J.C.,

Bestmann, S., 2008. Trial-by-trial fluctuations in the event-related

electroencephalogram reflect dynamic changes in the degree of surprise. J. Neurosci.

28 (47), 12539–12545.

Marshall, L., Mathys, C., Ruge, D., de Berker, A.O., Dayan, P., Stephan, K.E., Bestmann, S.,

2016. Pharmacological fingerprints of contextual uncertainty. PLoS Biol. 14 (11),

e1002575.

McCoy, B., Jahfari, S., Engels, G., Knapen, T., Theeuwes, J., 2019. Dopaminergic

medication reduces striatal sensitivity to negative outcomes in Parkinson’s disease.

Brain 142 (11), 3605–3620.

Meder, D., Herz, D.M., Rowe, J.B., Leh�ericy, S., Siebner, H.R., 2019. The role of dopamine

in the brain-lessons learned from Parkinson’s disease. Neuroimage 190, 79–93.

Mizumori, S.J., Tryon, V.L., 2015. Integrative hippocampal and decision-making

neurocircuitry during goal-relevant predictions and encoding. Prog. Brain Res. 219,

217–242.

Monchi, O., Petrides, M., Doyon, J., Postuma, R.B., Worsley, K., Dagher, A., 2004. Neural

bases of set-shifting deficits in Parkinson’s disease. J. Neurosci. 24 (3), 702–710.

Murty, V.P., Sambataro, F., Radulescu, E., Altamura, M., Iudicello, J., Zoltick, B., et al.,

2011. Selective updating of working memory content modulates meso-cortico-striatal

activity. Neuroimage 57 (3), 1264–1272.

Nichols, T., Brett, M., Andersson, J., Wager, T., Poline, J.B., 2005. Valid conjunction

inference with the minimum statistic. Neuroimage 25 (3), 653–660.

Nour, M.M., Dahoun, T., Schwartenbeck, P., Adams, R.A., FitzGerald, T.H., Coello, C.,

et al., 2018. Dopaminergic basis for signaling belief updates, but not surprise, and the

link to paranoia. Proc. Natl. Acad. Sci. Unit. States Am. 115 (43), E10167–E10176.

O’Reilly, R.C., Frank, M.J., 2006. Making working memory work: a computational model

of learning in the prefrontal cortex and basal ganglia. Neural Comput. 18, 283–328.

Pasquereau, B., Turner, R.S., 2014. Dopamine neurons encode errors in predicting

movement trigger occurrence. J. Neurophysicol. 113 (4), 1110–1123.

Pernet, C.R., 2014. Misconceptions in the use of the General Linear Model applied to

functional MRI: a tutorial for junior neuro-imagers. Front. Neurosci. 8, 1.

Perugini, A., Ditterich, J., Basso, M.A., 2016. Patients with Parkinson’s disease show

impaired use of priors in conditions of sensory uncertainty. Curr. Biol. 26 (14),

1902–1910.

Perugini, A., Basso, M.A., 2017. Perceptual decisions based on previously learned

information are independent of dopaminergic tone. J. Neurophysicol. 119 (3),

849–861.

Perugini, A., Ditterich, J., Shaikh, A.G., Knowlton, B.J., Basso, M.A., 2018. Paradoxical

decision-making: a framework for understanding cognition in Parkinson’s disease.

Trends Neurosci. 41 (8), 512–525.

Picciotto, M.R., Higley, M.J., Mineur, Y.S., 2012. Acetylcholine as a neuromodulator:

cholinergic signaling shapes nervous system function and behavior. Neuron 76 (1),

116–129.

Rae, C.L., Nombela, C., Rodríguez, P.V., Ye, Z., Hughes, L.E., Jones, P.S., et al., 2016.

Atomoxetine restores the response inhibition network in Parkinson’s disease. Brain

139 (8), 2235–2248.

R Core Team, 2018. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.o

rg/.

Rauss, K., Schwartz, S., Pourtois, G., 2011. Top-down effects on early visual processing in

humans: a predictive coding framework. Neurosci. Biobehav. Rev. 35 (5),

1237–1253.

Redgrave, P., Gurney, K., 2006. The short-latency dopamine signal: a role in discovering

novel actions? Nat. Rev. Neurosci. 7, 967–975.

Roemmich, R.T., Hack, N., Akbar, U., Hass, C.J., 2014. Effects of dopaminergic therapy on

locomotor adaptation and adaptive learning in persons with Parkinson’s disease.

Behav. Brain Res. 268, 31–39.

Schapiro, A.C., Gregory, E., Landau, B., McCloskey, M., Turk-Browne, N.B., 2014. The

necessity of the medial temporal lobe for statistical learning. J. Cognit. Neurosci. 26

(8), 1736–1747.

Schiffer, A.M., Ahlheim, C., Wurm, M.F., Schubotz, R.I., 2012. Surprised at all the

entropy: hippocampal, caudate and midbrain contributions to learning from

prediction errors. PloS One 7 (5), e36445.

Schmitz, Y., Benoit-Marand, M., Gonon, F., Sulzer, D., 2003. Presynaptic regulation of

dopaminergic neurotransmission. J. Neurochem. 87, 273–289.

Schultz, W., Dickinson, A., 2000. Neuronal coding of prediction errors. Annu. Rev.

Neurosci. 23, 473–500.

Schwartenbeck, P., FitzGerald, T.H., Dolan, R., 2016. Neural signals encoding shifts in

beliefs. Neuroimage 125, 578–586.

Stelzel, C., Fiebach, C.J., Cools, R., Tafazoli, S., D’Esposito, M., 2013. Dissociable fronto-

striatal effects of dopamine D2 receptor stimulation on cognitive versus motor

flexibility. Cortex 49, 2799–2811.

Strange, B.A., Duggins, A., Penny, W., Dolan, R.J., Friston, K.J., 2005. Information theory,

novelty and hippocampal responses: unpredicted or unpredictable? Neural Network.

18 (3), 225–230.

Smittenaar, P., Chase, H.W., Aarts, E., Nusselein, B., Bloem, B.R., Cools, R., 2012.

Decomposing effects of dopaminergic medication in Parkinson’s disease on

probabilistic action selection–learning or performance? Eur. J. Neurosci. 35 (7),

1144–1151.

Summerfield, C., Egner, T., 2009. Expectation (and attention) in visual cognition. Trends

Cognit. Sci. 13 (9), 403–409.

Trempler, I., Schiffer, A.M., El-Sourani, N., Ahlheim, C., Fink, G.R., Schubotz, R.I., 2017.

Frontostriatal contribution to the interplay of flexibility and stability in serial

prediction. J. Cognit. Neurosci. 29 (2), 298–309.

Trempler, I., Binder, E., El-Sourani, N., Schiffler, P., Tenberge, J.G., Schiffer, A.M., et al.,

2018. Association of grey matter changes with stability and flexibility of prediction in

akinetic-rigid Parkinson’s disease. Brain Struct. Funct. 223 (5), 2097–2111.

Tomassini, A., Ruge, D., Galea, J.M., Penny, W., Bestmann, S., 2016. The role of dopamine

in temporal uncertainty. J. Cognit. Neurosci. 28 (1), 96–110.

Tomassini, A., Pollak, T.A., Edwards, M.J., Bestmann, S., 2019. Learning from the past

and expecting the future in Parkinsonism: dopaminergic influence on predictions

about the timing of future events. Neuropsychologia 127, 9–18.

Turk-Browne, N.B., Scholl, B.J., Johnson, M.K., Chun, M.M., 2010. Implicit perceptual

anticipation triggered by statistical learning. J. Neurosci. 30 (33), 11177–11187.

Uitvlugt, M.G., Pleskac, T.J., Ravizza, S.M., 2016. The nature of working memory gating

in Parkinson’s disease: a multi-domain signal detection examination. Cognit. Affect

Behav. Neurosci. 16 (2), 289–301.

Vazey, E., Aston-Jones, G., 2012. The emerging role of norepinephrine in cognitive

dysfunctions of Parkinson’s disease. Front. Behav. Neurosci. 6, 48.

Vehtari, A., Gelman, A., Gabry, J., 2017. Practical Bayesian model evaluation using leave-

one-out cross-validation and waic. Stat. Comput. 27 (5), 1413–1432.

Vidaurre, D., Smith, S.M., Woolrich, M.W., 2017. Brain network dynamics are

hierarchically organized in time. Proc. Natl. Acad. Sci. Unit. States Am. 114 (48),

12827–12832.

Vilares, I., Kording, K.P., 2017. Dopaminergic medication increases reliance on current

information in Parkinson’s disease. Nat. Hum. Behav. 1 (8), 0129.

Whitfield-Gabrieli, S., Nieto-Castanon, A., 2012. Conn: a functional connectivity toolbox

for correlated and anticorrelated brain networks. Brain Connect. 2 (3), 125–141.

I. Trempler et al. NeuroImage 212 (2020) 116674

10



Williams, G.V., Castner, S.A., 2006. Under the curve: critical issues for elucidating D1

receptor function in working memory. Neuroscience 139 (1), 263–276.

Wolpe, N., Nombela, C., Rowe, J.B., 2015. Dopaminergic modulation of positive

expectations for goal-directed action: evidence from Parkinson’s disease. Front.

Psychol. 6, 1514.

Wolpe, N., Zhang, J., Nombela, C., Ingram, J.N., Wolpert, D.M., Rowe, J.B., 2018. Sensory

attenuation in Parkinson’s disease is related to disease severity and dopamine dose.

Sci. Rep. 8 (1), 15643.

Worsley, K.J., Friston, K.J., 1995. Analysis of fMRI time-series revisited—again.

Neuroimage 2 (3), 173–181.

Wylie, S.A., Van Den Wildenberg, W.P.M., Ridderinkhof, K.R., Bashore, T.R., Powell, V.D.,

Manning, C.A., Wooten, G.F., 2009. The effect of speed-accuracy strategy on response

interference control in Parkinson’s disease. Neuropsychologia 47 (8–9), 1844–1853.

Wylie, S.A., Ridderinkhof, K.R., Bashore, T.R., van den Wildenberg, W.P., 2010. The effect

of Parkinson’s disease on the dynamics of on-line and proactive cognitive control

during action selection. J. Cognit. Neurosci. 22 (9), 2058–2073.

Ye, Z., Altena, E., Nombela, C., Housden, C.R., Maxwell, H., Rittman, T., et al., 2015.

Improving response inhibition in Parkinson’s disease with atomoxetine. Biol.

Psychiatr. 77 (8), 740–748.

Ye, Z., Rae, C.L., Nombela, C., Ham, T., Rittman, T., Jones, P.S., et al., 2016. Predicting

beneficial effects of atomoxetine and citalopram on response inhibition in

Parkinson’s disease with clinical and neuroimaging measures. Hum. Brain Mapp. 37

(3), 1026–1037.

Yu, A.J., Dayan, P., 2002. Acetylcholine in cortical inference. Neural Network. 15 (4–6),

719–730.

Yu, A.J., Dayan, P., 2005. Uncertainty, neuromodulation, and attention. Neuron 46 (4),

681–692.

Yu, Y., FitzGerald, T.H., Friston, K.J., 2013. Working memory and anticipatory set

modulate midbrain and putamen activity. J. Neurosci. 33, 14040–14047.

I. Trempler et al. NeuroImage 212 (2020) 116674

11


